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I 

ABSTRACT 

We want to build n components so as to form an n com- 
ponent system which will function If at least k of the 
components function.  If x dollars Is Invested In building 
a component, then this component will function with prob- 
ability P(x) . Given a total Income of A dollars, the 
problem of Interest is to determine how much money we should 
invest in each component so as to maximize the probability 
of attaining a functioning system. This problem is con- 
sidered both in the sequential and in the nonsequential case. 
Conditions under which it is optimal to allocate A/n units 
at each stage, when A is your initial fortune, are 
presented.  The special case P(x) = mln (x,l)  is also 
considered in detail. 
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OPTIMAL ALLOCATIONS IN THE CONSTRUCTION OF 

k-OUT-OF-n RELIABILITY SYSTEMS 

C.  Dennan,  G.   J.   Lieberman,  S. M.  Ross 

1.     Introduction. 

We want to build    n    components  so as  to form an    n    component 

system which will function if at  least    k    of the components  function. 

If    x    dollars is invested  in building a component then this component 

will function with probability    .PCx),  where    P(x)    is an increasing 

function such that    P(0)  = 0.    We have a total income of    A    dollars. 

The problem of interest  is  to determine how much money we should  invest 

in each component so as to maximize the probability of attaining a 

functioning system.    We will be interested in this problem both in the 

sequential and  in the nonsequential case.     In the sequential case we 

assume  that  the individual components  are built sequentially  in  time and 

that knowledge as  to whether or not a component functions  is  available 

to us before we have  to allocate our  investment in the next component. 

In the nonsequential case  it  is assumed  that all allocations must be 

simultaneously made. 

In Section 2 of this  paper we consider  the case    k =s  1    and 

present conditions  on    P(x)     under which it is optimal  to put  an equal 

investment  in all    n    components and  conditions under which  it  is  optimal 

to put  the  total fortune     A    into a  single component.     In Section ^)   it 

1 
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is shown that the "equal investment" condition carries over to the case 

of general k. In Section h we consider the special case P(x) = x 

in the sequential situation and determine the optimal policy when k = 2. 

A conjecture as to the optimal policy in the general case is also made. 

Several remarks are made concerning the non-sequential case with P(x) = x 

(considered in [l]) in Section 5.  In the final section we consider a 

related problem. 

2.  The Case k = I. 

When k = I the sequential and nonsequential cases are identical: 

both are involved in determining x = (x., ••• , x ) with x > 0, 
n n 
2J x. = A so as to maximize [l - II (I - P(x.))], the reliability in the 
1 l n i-l 
latter case, and the identical expression p(x.) +   li     & (^"P(X4)) P(x.|) 

1        i=2 j=l      J     i 

in the former case. The interpretation of x is that x. dollars is to 

be invested in component  i in the nonsequential case, and, in the 

sequential case, x  dollars is to be invested in the ith attempt if the 

first i-l attempts to build a functioning component are unsuccessful. 
n 

The above is equivalent to choosing x,, ... , x , x. > 0, 2 x. = A 

n 

so as to minimize  2] ^0g( ^ " P(x.j))« 
i=l 1 

Proposition  I; 

(a)     If    log( I - P(x))    is convex then the optimal allocation is 

Xl " X2 = = xn = A/n 

• 
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(b)  If Iog( 1 - P(x)) is concave then an optimal allocation is 

x. = A. x0 = ••• = x = 0 . 
1   ' c        n 

Proof;    Follows from standard results about concave and convex 

functions. jj 

Remarks; 

(i)     In part (b)  the condition that    log( 1 - P(x))    be concave can be 

weakened to the condition that    log(1 - P(x))    be subadditive, 

i.e.,   that is,  (1 - P(x + y)) < (1 - P(x))(l - P(y)). 

(ii)     The condition that    log(1 -  P(x))     be superadditive,   i.e., 

(1 - P(x + y)) > (1 - P(x))   (1 - P(y)), would not be sufficient 

to establish part (a).    It would,  however,  necessarily imply that 

the optimal    x    vector would have all positive components. 

3.     The General Case. 

Part (a)   of Proposition 1 remains  true in the general case. 

Theorem 1;     If    log( 1 - P(x))     is (strictly)  convex then when one wants 

to sequentially build    k    working components  in at most    n    attempts, 

n > k,   then it  is (uniquely)   optimal to allocate    A/n    at each stage 

when    A    is your  total resources. 

  • - -"-" ■     ■■■ r        1 i^iii^fi 1 1 
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Proof:  Assume first that log(1 - P(x))  is strictly convex. The proof 

is by induction on k^ and^ as we have already proven the result when 

k a I let us assume that it is true for all values less than k.  Now 

consider the k component case.  If the number of possible stages is 

k then a policy reduces to a vector (x-, ... , x.) where x. > 0, 
k 1       k i 

V x, < A^ with the interpretation that the policy invests x. in the 

1 

first stage and if the first i-1 stages all result in working components 

then x  is invested in the ith stage.  (That is, when the number of 

available stages is identical with the number of desired components then 

the sequential problem reduces to the nonsequential one.)  Thus, the 
f, 

problem reduces to 

k k 
Maximizing      II    P(x.)     subject  to    x    > 0, ^ x< = A 

i=l        I 1 1    1 

or,  equivalently,   to, 

k k 
Maximizing Y  log P(x.)  subject to x > 0, ^ x = A. 

1      1 t     1 

New the strict convexity of log( 1 - P(x)) implies that log(P(x))  is 

strictly concave (see the following Lemma 1).  Hence, by standard 

arguments, it follows that x = A/k, i = 1, ... , k is the (unique) 

optimal allocation and the result is established in this case. 

Thus the result is true in the k component case when the 

nuober of stages is also equal to k.  So let us assume that the result 

*>olds in the k component case whenever the number of stages is less 

t.ian n and try to prove that it also holds when the number of stages 

; 
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equals n. To do so suppose that an optimal policy for a k-component 

n-stage problem initially allocates an amount x.. Now if this initial 

attempt is successful then the induction hypothesis (on the number of 

desired components) tells us that it is uniquely optimal from that point 

on to allocate (A-x,)/(n-l) for each of the remaining n-1 stages. On 

the other hand even if the initial attempt is unsuccessful then as there 

are only n-1 stages to go it follows by the induction hypothesis on the 

number of stages in the k-component case that it is still optimal to 

allocate  (A-x.)/(n-l)  on each of the remaining n-1 stages.  If 

x, - A/n  then the result is proven.  So let us suppose that x. ^ A/n 

and obtain a contradiction.  If x. /£ A/n then consider the policy that 

allocates -^ [x, + (A-x.)/(n-l) ]  for each of the first two stages and 

then allocates (A-xl)/(n-l)  for each of the last n-2 stages.  This 

policy is thus identical with the optimal policy during the last n-2 

stages.  Now the probability that at least one of the components built 

during the first two stages is successful is 

(1) 1 - [1 - P( c1)][ 1 - P 
A-x, 

nTT 

under the optimal policy; while it is 

(2) ■Hih-^ll] 

1 

It  is  easy to show that an optimal  policy exists  for the n stage 
problem.     This  is done by first  proving recursively that  the optimal 
value  function for an n stage problem is a continuous function of  the 
initial  fortune whenever    P(x)     is continuous.    An optimal policy  then 
exists  since a continuous  function obtains  its maximum on a closed  sot. 

■ 
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under the new policy. Also the probability that both components are 

successful Is 

(3) 

for the optimal policy^ while it is 

CO 
/1 r     A-Xii 
[2 [xi+ "sri 

for the new policy.     It follows by the results given for    k » 1    that 

(2)   is greater than (1),  and it follows from that fact that    log(P(x)) 

is concave (Lemma 1)   that (k)  is greater than (3).    Hence,  under the new 

policy the number of successes during the first two stages is stochastically 

greater than it is under the optimal policy.    As  the two policies are 

identical after  the first two stages it thus follows  that the probability 

of at least    k    successes is greater under  the new policy than it is 

under the optimal policy.     This contradiction shows  that    x    = A/n, 

which proves  the result in the k-componenf. case for any number of stages, 

which also completes  the initial induction proof. 

If log(1 - F(x)) is convex but not strictly so, then we can 

approximate log(1 - P(x)) arbitrarily closely by functions that are 

strictly convex and then apply a continuity argument.       | 

The following lemma was used in the proof of the theorem. 
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I 

Lemma 1;  If 0 < P(x) < 1, and log( 1 - P(x))  is convex then 

log(P(x))  is concave. 

Proof; Suppose the hypothesis of the lemma are true. Then 

^ d2 .  ..  D. ,,  P(x) V"(x)   - (P'(x))2 - P"(x) 
o < —r log( 1 - P( x)) = s /   ^ / i ^-k1 >~-J- 

dx (1 - PCx))' 

implying that 

Now. 

F (x^ - 1 - P(x)    - 0 

dx^ 

which is negative  since    P"(x)  < 

jf log t(.x) __ P(x)  P"(,)  - (P'(x))g 

('(«)) 

o. a 

Remarks. 

(i)  It follows from Theorem 1 that when log(l - P(x)) is convex the 

optimal sequential policy is nonsequential is nature, and is 

thus also the optimal policy when the allocations for each stage 

must be made simultaneously rather than sequentially. 

(ii) If we think of P(x) as being a probability distribution function 

then the condition that log(1 - P(x))  be convex is equivalent to 

the condition that P(x)  is a decreasing failure rate distribution. 

Since mixtures of decreasing failure rate distributions are them- 

selves decreasing failure rate distributions it thus follows that 

log(1 - P(x))  will be convex whenever 

7 
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where 

and 

P(X) = / PJx) dp(a) 
a 

log( 1 - Pu'x)) is convex for all a, 

F(Cl')  is a  probability distribution function. 

In particular, any P(x)  of the form 

P(x) = / (1 - e"001) dF(a) 
a 

will be such that    log(1 - P(x))    is convex, 

(iii)     If we let    V (A)     denote the probability that at least    k    successes 

will occur in  the    n    stages  under an optimal  policy then from 

Theorem 1 it follows that 

VJA)  =   I   (")   (P(Vn))1 (1  -  P(A/n)) 
n i=k 

n-i 

If    P(x)     is differentiable then 

P(x) lim   ijp^ =    lim   P'Cx) = P'CO) = \; 
x -»0 x -»0 

and thus from the Poisson approximation to the binomial distribution 

it follows that 

VJA) t e-M %   (M)kA.' 
i=k 

n' 
as n t oo 

(This  is  so since    V (A)  = Prob{Bin(n,   P(A/n))   > k     where 

Bin(n,   P(A/n))     represents a binomial random variable with 

parameters n and P(A/n)  .)  It should be  pointed out that  this 

convergence  is not  necessarily monotone  for an  arbitrary differ- 

entiable  function     P(x)    with    P(0)   = 0. 

8 
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If. The Sequential Case P(x) = x. 

While the analogue of part (a) of Proposition 1 remains true 

in the case of arbitrary k it is obvious that the same cannot be said 

of part (b).  In this section we consider the special case P(x) = x. 

Suppose that we need to sequentially build two (k = 2) function- 

ing components in at most n attempts when P(x) = min(x,1).  Suppose 

that our initial fortune is A and consider the policy v    which sequentially 

allocates A/n at each stage until a functioning component is built, and, 

at this point all ...tes all of the remaining fortune xor tne next stage. 

In other words if our present fortune is y and at most r additional 

components can be built then 

(a) if two additional functioning components are still needed then v 

allocates y/r  for the next component* 

(b) if only one additional functioning component is needed then TT 

allocates y for the next component. 

Denote by U (y), the probability that two functioning components 

will be built when our initial fortune is y and policy ir  is employed. 

Proposition 2:     For y < 1 

"„(y) (i -*)   ty - i 

Prjof;  By conditioning on the time of the first successful component we 

see that 

r=l nv n'   n 

v hich simplifies  to prove   the  proposition.       | 

9 
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The next proposition states that U (y)  satisfies what, in 

dynamic programming terminology, is known as the optimallty equation. 

Proposition 3:  For y < 1 

U (y) =   Max  [x(y-x) + (1-x) Un.l
(y"x)1 

0 < x < y 

Proof: Define 

£(*) = x(y-x) + (I-x) Un-l(y-x) 

= x(y-x) + (1-x 

Differentiation yields 

n.n-1 
+ y - x - ll 

f'(x) = (l-x) ll -^f]n 
n-l 

n-1 

implying that f'fx) = 0 If and only if 

1      1  Zl* 1 - x = 1 - *—r 
n-l 

or 

Since f"(y/n) = 0, it follows that f(x) attains its maximum value at 

x = y/n. This proves the result since f(y/n) = U (y).| 

Theorem 2; For an initial fortune of A < 1 the policy ir maximizes the 

probability of obtaining two functioning components. 

\ 

10 
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Proof:    From Proposition 5 we see that 

(5) Ujy)   > x(y-x)   +  ( 1-x)  U .1(y-x) for all    0 < x < y 

The  right  side  of  the  above  can be  interpreted  as  the  return (i.e., 

probability  of  obtaining  two  functioning components)   if    x    is allocated 

for the  first stage and  then policy    w    is used  for  the  remaining stages. 

As the inequality (5)  holds  for all    x,  0 < y < x,   and^   as we already 

know that    ^    is  optimal when only one additional  functioning comtonent 

is needed (Proposition 1),   we can interpret  (5)   as  stating that using 

policy    TT    is better  than doing, anything else  for one  stage and  then 

switching to    TT.     Repeating this argument yields  that  using   TT    is better 

than doing anything else  for  two stages and   then switching to    TT.    Finally, 

by repeating the same argument a total of    n    times we  .ee that using 

policy    TT    is better  than doing anything else  for the  first    n    stages. 

This completes   the  proof.        § 

K 

Remark: 

Since Theorem 2 states that    U (y)     is  the maximal probability when 

at most    n    stages are available it  follows  that    U (y)     is an Increasing 
n 

function of n  and thus, for 0 < y < 1, 

n 
U (y) = ( 1 - £)  + y - 1 t e"y + y - 1   as  n t «, 

(This constitutes another  proof that  the convergence of    (1 - —)       to 

e        is monotone when    0 < y < L)    In fact,   for any positive    y    it  it well 

known and can be easily  shown that the convergence  is monotone  for all 

n > N    where    y/N <  1. 

HMHM mm Mt^M -  --   -  ._. _   -._— _^    -   •■ --■■■■   ■■  -•   ■ I   . • 



■pi   .' '   .l1"^". *'*~*rf!'*' JW^'Vfmi.! ly^v^m^,.. ■m':\.rjr^rmiLj!*v-w^ -!T*y*'~-■--*■■-. »n■imiiwjpivii^.|n(ifli.iini,ii^i .^.IJH.IJUIJI«! ( 

The  policy    TT    is no  longer optimal when our  initial fortune 

can be greater  than  1.     Let  us define  the  policy    TT*    to be such that 

when the  present  fortune  is    y    and at most    n    additional components 

can be built. 

(a) allocates    y    if only one additional working component is needed; 

and 

(b) if two additional working components are needed,   allocates 

n 
y - i 

1 
n 

if   y>n-l 

n 
lf   ^n-l 

If we let    V (y)    denote  tne probability of a success (two working 
n 

components)  when our  initial fortune is    y    and policy    TT*    is employed 

y      n* 1 
then, as    y < n/(n-l)     implies that    y - ^ < -30 t   

it fo11«»" that,   for 

0 < y < 2 

"(y) if  y <-iT ' — n-1 
vn(y) - ( 

y - It (2-y) 11^(1)    if   y> Jj 

or,  equlvalently,   for    0 < y < 2 

vn(y) = 

(i.Z)  +y. x if yi^rr 

(2-y)(^f)n"l + y- 1   if   y>^ 

Theorem 3; Policy ir* is optimal. 

Proof:  The proof would follow exactly as in the proof of Theorem 2, 

if we could show that 

12 
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(6)      Vn(y) >xMln(y-x,   1)  + (1-x) V^^y-x)       for all    x <Min(l,y) 

When    y < l,  (6)   Is  Identical  to (5)  and  thus we only need  prove (6) 

when    1 < y < 2.    Hence we must show Lnat,   for     1 < y < 2, 

(1)    V(y)>Max Max (x + (1-x)  V      (y-x)), 
U;      n'   ' - Lo<x<y-l n-1 

Max       {x(y-x) + (1-x) Vn-1(y-x)) 
y-1 < x < 1 * J 

We consider 2 cases. 

Case 1. y < ~J . 

Now. 

Max   (x + (1-x) V^y-x)) 
0 < x < y-1 

y-x n-1 
Max   {x + (1-x) [(1 - ^)" ' + y - x - 1]) 

0 < x < y-1 

Define the function f(x)  by 

n-1 

Now. 

and 

f(x) =x + (i-x) [(i -£fr * + y - x - U 

f(x) = i + (i-x)[(i-^)n'2- n - ^-^r1 - y + ^ ! 

.x.n-3 n-2 n-2 

■■<«) - d-) (H) fl ■ B"'J - (l - H)"" ^ - (l ■ B 20 
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Hence    f(x)    is a convex  function in the region    0 < x < y-1,   and thus 

obtains  its maximum value  in this  region either at    x = 0    or    x = y-1. 

Now 
n-1 

Ho) = (i --^x)     +y- i 

and 

,n-2 n-1 
f(y-l)  = y -   1 + (S-y) (~f) 

Now the function 

8(y) = f(y-i) - vn(y) = (2.y) (^f)n"   - (i - ^)n 

is  zero at    y = —r  .     Differentiation shows  that  it  is  an increasing 
n-1 ' 

function when    y < —r    and  thus   it follows  that - n-1 

f(y-l)  <y - I + (I -*)    = Vn(y) 

y n 

As was previously noted    {I - —)       is increasing in n,   it follows that 

f(0)  < Vn(y);   thus, 

Max f(x) <   V (y)      when    y <-£1T 
0 < x < y-1 n " n*1 

Also,   since when    y < —r  ,   the  inequality ' — n-1  ' - 

Vn(y) >     Max        {x(y-x) + (1-x) Vn  ,(y-Jc)) 
y-l<x<l n'1 

is identical to the Inequality (5), it follows that (7) is established 

when y < —r .  We are thus ready for 
' — n-1 ' 

Ik 

i 
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Case 2;      y > "^r ——— — n-1 

In this case 

Max (x(y-x)  f (1-x) V    .(y-x)) 
y- 1 < x < I 

Z-XN 
n-1 

Max {x(y-x)+ (1-x)  [(I - f—)        + y - x -   1]} 
y-1 < x < 1 n-1' 

Now the function in brackets above is a decreasing function of x for 

x > y-1 (to show this we use the fact that x > y-1, y >—r implies 

that    nx>y),  and thus  the    Max    above is equal to 

n-9 n-l 
= y - i + (2-y) (^f) 

= Vjy) 

Hence if we can show that V (y) >   Max    g(x)  when y >-"j; , 
n     0 < x < y-1 

where g(x)  is defined by 

g(x) = x + (1-x) V^^y-x) , 

then the proof will be complete. 

Now, let us suppose that y > —^r .  Then — n-c 

Max    g(x) = Max 
0 < x < y-1 

Max 

0 % x < y 

g(x),      Max      g(x) 
n-1 n-1 .   -  , 

y - -z-z <* < y-1 
n-2 n-2 - " - 

But 

Max 

0 < x < y - 

n-2 
g(x) = Max      {x+(l-x)[(2-y+x) i^)" "+y-^-^) n-2' 

Now the function in brackets above can be easily shown, upon differentiation, 

to be a convex function and thus it attains its maximum value either at 

X 
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x = 0    or at    x = y - ~2 •     Thus 

(8) 

Also. 

n-1, 
Max g(x)  = Max[g(0),  g(y - —g) 1 

°<*sy-U 

Max g(x)   = Max 
y-x n-1 

/-^<-<y-' 

(»+(l-x)[(l    ^Ef)     ♦ y-x-D) 

Now it has previously been shown that the above  function in brackets  is 

a convex function and  thus 

(9) Max 

y-^<*<y-* 

n-L 
g(x)  =Max[g(y-^),  g(y-l)l 

n-1 
Hence,   from (8)  and (9) we see that when   V > ^ 

(10) Max g(x) 
0 < x < y-1 

Max 

(2-y) {%$      + y - i 

n-1 

y - i + (2-y) (^f)""1 

n-1 On  the other hand,  when    ^-^ > y >-^r ,  we obtain  thac ' n-^ — n-l ' 

(11) Max        g(x)  = Max 
0 < x < y-1 

n-'S n-2 

(2-y) (H)      + y " 1 

n-2 n-l 
(2-y)   (CT ^ y ■   1 
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With the help of a  little algebra we obtain from (10)  and (11)   that 

when    y > —T 

,n-2 n-1 
Max       g(x)  = y -   1 + (2-y)  (^)        = Vn(y) 

0 < x < y-1 

and   the  proof is complete. 

Hence the optimal policy  is determined in the case    k = 2. 

If    n = »^   it can be seen that no optimal policy exists.     The dynamic 

programming functional equation will have a solutionj  however^   the 

solution is not  the return function of any policy.     The  policy determined 

by  the solution is  the non-optimal policy of allocating    x = 0    at 

every stage. 

In the general case consider the policy    ir*    which is  such that 

if our present fortune is    y    and if    k    additional working components 

are needed with at most    n    stages to go;   then    TT*    calls  for  allocating 

1 
n if y<-!L(k-l) 

y - (k-1) if        y>-JL(k-l) 

(Note that    TT*    corresponds  to  the previously defined    TT*    when    k = 2.) 

Define    V    .(y)     to be the   probability of success under    v* wh^n our 

present  fortune is    y    and    k    additional working components  are needed 

and at most    n    additional components can be built.     If we can show 

that 

(^)   vnjk(y)> 
0 < x < min(y^ 1) » ' 

17 
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Chen it would follow that 77*  is the optimal strategy.  We have, at 

present, been unable to verify (12) but we conjecture that it is valid 

and that TT* is optimal. 

A simple formula for V .(y)  in the case y < 1  is obtained 

by conditioning on the number of steps required to obcain k-1 success- 

ful components.  This yields 

"ö1  r-1  v k"1     v r-k+i     rv 

* r=k-l 

5.  The Non-Sequential Case:- P(x) = x. 

The non-sequential case with P(x) = x and general k was 

considered in [l] where it was shown that the optimal x vector 

x* = (x* x*)  is such that all of the non-zero element of x* 
—     1'    ' n7 — 

are equal.  A problem of interest is to determine for 0 < y < k that 

value of r that maximizes 

Q( r) a P (at least k components work} 

j=k J r 

r-j 

for r = k, k+1, ... f  n.  From Proposition 1(b), r = 1 when k = 1. 

In general the optimal value of r is a function of y and  k but 

at present only seems obtainable by numerical methods.  However we 

can make several remarks: 

(1)  If y is near enough  to k then the optimal value of r is 

r = k.  To see this note that when y = k, Q(k) = 1 and Q(r) < 1 

18 

■ iimaiiritfn if r I    ■HMhMMl-   -      ' -     ■ ■    —^- 



'^^■■msm^t^miftmwr^f^'^'^^^^-T^''1-''- >>"'«w*'> iim^ .m^mfmm-'^.'^iriiiemmigSK^ 

if r > k.  Since Q(r)  is a continuous function of y for each 

r  the substance of the remark follows. 

(2) For every r there exists an e > 0 such that tor y < e , 

Q(r+1) > Q(r) with strict inequality holding if k > 1.  Thus, 

loosely speaking, for small y  the amount of redundancy in the 

optimal allocation is large.  We show this by considering for 

r > k 

y ^ 0 
Q(r+1)   v    r'  v   r+l' 

= R(k)   (say). 

We need only show that    R(k)   < 1    with strict inequality holding for 
ft 

k > 1.     Now   R(l)  =  I,  R(2)   =  1 -   1/r    < 1.    However,   as   long as 

r > k+1, 

R(k+1) 
R(k) 

r+1 
r 

1 - k+1 
r+1 

1 - r+1 

r+1 r-k 
r 

1 - 

r+l-k 

k 
r 

1 - r+1 

< 1 

Then,  R(k)  < 1    for all    k > 1    and   the proof of  the  remark follows. 

19 
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6.     A Related Problem. 

Rather than maximizing the  probability of sequentially bullding    k 

successful components within a budget of    A    we shall now assume that 

our budget  is unlimited and  that  the problem is  to minimize  the expected 

amount of money spent in obtaining the    k    successful components. 

Consider first  the case    k =   I.     If    x    is initially allocated  and 

the component built  is not  successful (which will occur with  probability 

1 -  P(x);     then the situation will be exactly  the same as  it was before 

the  initial investment.    Hence,   if it was  initially optimal to allocate 

x     then  it will still be  optimal  to allocate    x    for  the  second component. 

Hence a  policy corresponds 'to a value    x    (in dynamic  programming termi- 

nology we  are restricting attention to  stationary policies),   and the 

expected cost to obtain a functioning component under such a policy would 

equal    x/P(x).    Thus,   the problem is to 

x 
Min 
x > 0 

P(x) 

It  should perhaps be pointed  out  that when    log( I -  P(x))     is  convex 

then    x/P(x)     is an  increasing function of    x    and hence no optimal  policy 

exists.     Similarly if    log(1 - P(x))     is superadditive then 

inf 
x ..        x =     lim 

>0PW  "x"oPW "^^ 

and again no optimal policy exists. 
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The case  of general    k    is  solved by noting that it  is  identical 

to the    k =   1    problem taken    k    times.    Hence,   an optimal (if one 

exists)   policy would  be to invest    x*    units at each stage until a 

total of    k    working components are  obtained,  where    x*    (if  it exists) 

is  such  that 

^      =   Min       ' 
^)%n>o^   ' 
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